Unit Seven: The Deep Sea

The Deep Sea

• The deep sea is the part of the marine environment that lies below the level of effective _____ penetration for phytoplankton photosynthesis in the open ocean and deeper than the depth of the continental shelves (>200m).

The Oceanic Zone (review from chapter one)

- Divisions of the oceanic zone:
 - epipelagic: 0 200 m in depth, this the _____ zone (lighted)
 - o mesopelagic: 200 1,000 m in depth, lower boundary in the tropics is the 10°C isotherm
 - \circ bathypelagic: 2,000 4,000 m in depth, 10°C to 4°C (benthic zone is the bathyal zone)
 - \circ _____: 4,000 m to 6,000 m, overlying the plains of the major ocean basins (benthic zone is the abyssal zone)
 - hadalpelagic: 6,000 10,000 m in depth, includes the open water of the deep oceanic trenches (benthic zone is the hadal zone)

Light & Salinity

- Except in the upper limits of the mesopelagic zone, no light penetrates into the deep ocean. This lightless area is called the _____ zone.
- _____ is relatively constant below the first few hundred meters.

Pressure

- In the ocean, pressure increases 1 atmosphere for each ______ in depth. In the ocean, pressure increases 1 atmosphere for each 10 m in depth. This leads to a pressure of more than 1,000 atm in the Mariana Trench. Organisms that live under great pressure employ a number of adaptations.
 - lack of air-filled organs
 - o lower _____ rates
 - homeoviscous adaptation: incorporation of more fluid lipids into cell membranes to help in membrane transport
 - decreased ______-forming (calcium carbonate is more soluble under pressure)

Temperature

- The greatest and most rapid changes in temperature occur where the surface waters meet the deep waters (the _____) and where hydrothermal vents emit hot water.
 - \circ $\;$ Thermoclines vary in thickness, and are strongest in the tropics.
 - vents emit water as high as 400°C

Oxygen

- Virtually all the water of the deep sea has its origin at the surface in the Arctic or Antarctic seas. Here, the oxygen-rich cold water sinks and flows north or south to make up the deep water of the world's ocean.
- At a depth of 500 to 1,000 meters, the oxygen minimum zone is found. This is an area of lower oxygen levels, caused by ______ of organisms coupled with the lack of ______ that occurs at the surface.

Food

• The deep sea is removed from the photosynthetic zone and has no ______ production except for the chemosynthesis that occurs at hydrothermal vents. Food is therefore a scarce resource, originating primarily from organic material that falls down through the deep sea.

Anatomical Differences in Mesopelagic and Bathypelagic Fishes

- Mesopelagic Fishes
 - color: silver
 - _____: many
 - o jaws: short
 - o eyes: large
 - o swim bladder: present
 - \circ heart: large
 - gills: many _____
- Bathypelagic Fishes
 - color: black
 - photophores: few
 - o jaws: long
 - eyes: small
 - _____: absent
 - heart: small
 - o gills: few filaments

Biological Characteristics of Deep-Sea Organisms

- Ecological
 - low mortality due to low _____ pressure
 - slow, indeterminate growth
 - low population densities
- Reproduction and Development
 - o few eggs, large, yolk-rich
 - o late _____ maturity
 - slow embryological development
 - o breed usually once (semelparous)
- Physiological
 - o low _____ rate
 - high water content
 - o small size

Abyssal Plain

• The Abyssal Plain is the largest ocean ecosystem. This flat, ______ covered area is rich in organic material that has floated down from above as marine snow. The abyssal plain is dominated by ______ and arthropods, which scour the ocean floor for detritus.

Mid-Ocean Ridge

• The Mid-Ocean Ridge system is the largest mountain chain on Earth. They are geologically important because they occur at ______ plate boundaries where new ocean floor is created through volcanic activity. This volcanic activity also gives rise to another important ecosystem, the hydrothermal vent.

Hydrothermal Vents

• All vent systems depend on the primary productivity of ______ (chemosynthetic) bacteria that form organic compounds from hydrogen sulfide (H₂S). Organisms of the hydrothermal vent are adapted to high water temperature, and typically have short life spans.

Methane Seep

• Methane Seeps are the cold water cousins of the hydrothermal vent. The base of the food chain is also dependent on chemosynthesis, but the bacteria are feeding on ______ instead of H₂S. Due to the colder temperatures, organisms here are often long lived. ______ worms at a methane seep can live several hundred years, compared to those at hydrothermal vents that may live only a few years.